What Is White Matter?

White matter refers to axon tracts and commissures. Long thought to be passive tissue, it actively affects learning and brain functions, modulating the distribution of action potentials, acting as a relay and coordinating communication between different brain regions.

White matter is named for its relatively light appearance resulting from the lipid content of myelin. However, the tissue of the freshly cut brain appears pinkish white to the naked eye because myelin is composed largely of lipid tissue veined with capillaries. Its white color in prepared specimens is due to its usual preservation in formaldehyde.


White Matter

White matter is composed of bundles of myelinated nerve cell projections (or axons), which connect various gray matter areas (the locations of nerve cell bodies) of the brain to each other, and carry nerve impulses between neurons.

White matter structure of human brain

White matter structure of human brain (taken by MRI). Credit: Kubicki M., McCarley R.W., Westin C-F., Park H-J., Maier S.E., Kikinis R., Jolesz F.A., Shenton M.E. A review of diffusion tensor imaging studies in schizophrenia. J Psychiatr Res. 2007 Jan-Feb;41(1-2):15-30. PMID: 16023676. PMCID: PMC2768134.

The total number of long range fibers within a cerebral hemisphere is 2% of the total number of cortico-cortical fibers (across cortical areas) and is roughly the same number as those that communicate between the two hemispheres in the brain’s largest white tissue structure, the Corpus callosum. Schüz and Braitenberg note “As a rough rule, the number of fibres of a certain range of lengths is inversely proportional to their length.”

White matter in nonelderly adults is 1.7–3.6% blood.

Grey Matter

The other main component of the brain is grey matter (actually pinkish tan due to blood capillaries), which is composed of neurons. The substantia nigra is a third colored component found in the brain that appears darker due to higher levels of melanin in dopaminergic neurons than its nearby areas.

Note that white matter can sometimes appear darker than grey matter on a microscope slide because of the type of stain used.


White matter forms the bulk of the deep parts of the brain and the superficial parts of the spinal cord. Aggregates of gray matter such as the basal ganglia (caudate nucleus, putamen, globus pallidus, subthalamic nucleus, nucleus accumbens) and brain stem nuclei (red nucleus, substantia nigra, cranial nerve nuclei) are spread within the cerebral white matter.

The cerebellum is structured in a similar manner as the cerebrum, with a superficial mantle of cerebellar cortex, deep cerebellar white matter (called the “arbor vitae”) and aggregates of grey matter surrounded by deep cerebellar white matter (dentate nucleus, globose nucleus, emboliform nucleus, and fastigial nucleus). The fluid-filled cerebral ventricles (lateral ventricles, third ventricle, cerebral aqueduct, fourth ventricle) are also located deep within the cerebral white matter.

Myelinated Axon Length

Men have more white matter than females both in volume and in length of myelinated axons. At the age of 20, the total length of myelinated fibers in males is 176,000 km while that of a female is 149,000 km. There is a decline in total length with age of about 10% each decade such that a man at 80 years of age has 97,200 km and a female 82,000 km. Most of this reduction is due to the loss of thinner fibers.

One study found that compared to women, men have approximately 6.5 times the amount of gray matter related to general intelligence; and compared to men, women have nearly 10 times the amount of white matter related to general intelligence. Gray matter represents information processing centers in the brain, and white matter represents the networking of – or connections between – these processing centers.


White matter is the tissue through which messages pass between different areas of gray matter within the central nervous system. The white matter is white because of the fatty substance (myelin) that surrounds the nerve fibers (axons). This myelin is found in almost all long nerve fibers, and acts as an electrical insulation. This is important because it allows the messages to pass quickly from place to place.

There are three different kinds of tracts, or bundles of axons, which connect one part of the brain to another and to the spinal cord, within the white matter:

  • Projection tract extend vertically between higher and lower brain and spinal cord centers, and carry information between the cerebrum and the rest of the body. The cortico spinal tracts, for example, carry motor signals from the cerebrum to the brainstem and spinal cord. Other projection tracts carry signals upward to the cerebral cortex. Superior to the brainstem, such tracts form a broad, dense sheet called the internal capsule between the thalamus and basal nuclei, then radiate in a diverging, fanlike array to specific areas of the cortex.
  • Commissural tracts cross from one cerebral hemisphere to the other through bridges called commissures. The great majority of commissural tracts pass through the large corpus callosum. A few tracts pass through the much smaller anterior and posterior commissures. Commissural tracts enable the left and right sides of the cerebrum to communicate with each other.
  • Association tracts connect different regions within the same hemisphere of the brain. Long association fibers connect different lobes of a hemisphere to each other whereas short association fibers connect different gyri within a single lobe. Among their roles, association tracts link perceptual and memory centers of the brain.

Unlike gray matter, which peaks in development in a person’s twenties, the white matter continues to develop, and peaks in middle age.


The study of white matter has been advanced with the neuroimaging technique called diffusion tensor imaging where magnetic resonance imaging (MRI) brain scanners are used. As of 2007, more than 700 publications have been published on the subject.

A 2009 paper by Jan Scholz and colleagues used diffusion tensor imaging (DTI) to demonstrate changes in white matter volume as a result of learning a new motor task (e.g. juggling). The study is important as the first paper to correlate motor learning with white matter changes. Previously, many researchers had considered this type of learning to be exclusively mediated by dendrites, which are not present in white matter.

The authors suggest that electrical activity in axons may regulate myelination in axons. Or, gross changes in the diameter or packing density of the axon might cause the change. A more recent DTI study by Sampaio-Baptista and colleagues reported changes in white matter with motor learning along with increases in myelination.

Top Image: Lateral Portion of Frontal, Parietal, Occipital, and Superior Portion of Temporal Lobe Resected. By John A Beal, PhD Dep’t. of Cellular Biology & Anatomy, Louisiana State University Health Sciences Center Shreveport CC BY 2.5, via Wikimedia Commons