Gene Stimulation Treatment For Rett’s Syndrome Haploinsufficiencies

A new approach to treating Rett’s syndrome through stimulating specific genes has been developed by researchers at the International School for Advanced Studies (SISSA).

To illustrate it, picture the following scenario. A colleague at work has suddenly fallen ill and is going to be away from the office for a while.

What do you do? Do you go on working at your usual pace and by doing so risk a huge backlog of work that will affect the performance of the whole office, or do you roll up your sleeves and get down to it (perhaps also after your boss has motivated you by promising some benefit) by doubling your efforts and doing your absent colleague’s work as well as your own?

Something similar occurs with genes when their homologues are missing, a condition doctors call haploinsufficiency. When this abnormality manifests, especially when it concerns genes that have an important function in the central nervous system, it may lead to very serious diseases, such as Rett’s syndrome that causes severe progressive mental retardation related to the FOXG1 gene.

The researchers at SISSA, led by Antonello Mallamaci, has decided to adopt the “motivational” boss strategy by stimulating the surviving FOXG1 gene to work more to compensate for the absence of the missing gene.

Gene Stimulation

Mallamaci explains:

“By using viral vectors to insert into neurons’ RNA fragments targeting the gene’s regulatory sequences, we “gently” stimulated the gene to do more work, in particular nearly double. Note that we don’t want the gene to do more than that.

If it worked, say, three times as much, it could cause even worse damage”. In fact, it is known that when three copies of the FOXG1 exist (one more than normal), we have West’s syndrome, which is perhaps even worse as it causes a severe form of epilepsy. “It’s therefore vital that the gene we stimulate does no more than about double the normal amount of work”.

The method adopted by the Trieste group is a “cunning” solution to the treatment problems posed by these diseases.

“Stimulating the normal gene allows us to preserve its natural endogenous regulation”, says Mallamaci.

Genes in fact are not expressed everywhere and at the same intensity: to the contrary, in many body tissues they are silenced, in others their activity is time-modulated with great precision. If their regulation were to be disrupted, it is easy to imagine the chaos that this would generate.

“Going back to the office worker’s metaphor, it’s like having an inexperienced intern do the absent worker’s job: at best he won’t do anything, at worst he’ll mess things up. Instead, asking an experienced colleague, who’s familiar with the office’s processes and rhythms, to work harder, offers greater guarantees”.

Testing FOXG1

The team ran several tests. First, in vitro, the scientists checked whether stimulation through promoter RNA was able to amplify gene activity only where it was needed.

“FOXG1 is only active in the anterior brain and we absolutely don’t want it to act elsewhere in the nervous system or the body”, explains Mallamaci. “The tests gave positive results: after stimulation, the gene continued to be expressed only in cells where it had previously been active and remained silent in tissues where it normally doesn’t work. Very importantly, the activity observed increased by a factor not far from 2, i.e. that “double” expression that we were trying to achieve”.

The second test, also in vitro, demonstrated that the gene’s endogenous regulatory mechanisms related to the electrical activity of the neurons expressing it are not altered by stimulation with RNA:

“we saw a rise in the gene’s activity, but the shape of the time-activity curve was basically unchanged, a clear indication that regulation remains the same”,

explains Cristina Fimiani, PhD student in Functional and Structural Genomics at SISSA and co-first author of the study.

The third step was to see whether the stimulation also worked in vivo.

“The test was done on healthy mice and we found that the stimulation was even more effective in vivo than in vitro,” Mallamaci concludes.

“We’re still at the beginning of a very long clinical process that might one day lead to treatment”, he adds. “The results, though, are very clear and definitely encourage us to continue this line of research. The next steps will be in vivo tests on animal models affected by the disease”.

What makes these therapies so interesting for the future?

“Rett’s disease is rare and affects only a small number of patients, so it doesn’t attract the attention and investments of major pharmaceutical companies”, concludes the scientist. “But, taken together, haploinsufficiencies affect very many people. The methodology we present in this study is therefore a test for a general method capable of fighting the large number of haploinsufficencies affecting the nervous system, and once developed it could be easily adapted to different genes”.

Cristina Fimiani, Elisa Goina, Qin Su, Guangping Gao &Antonello Mallamaci
RNA activation of haploinsufficient Foxg1 gene in murine neocortex
Scientific Reports 6, Article number: 39311 (2016) doi:10.1038/srep39311

Image: SISSA. The rat’s brain areas stimulated in the study.

10 Shares
Share
Tweet
+1